Prospects for reactor monitoring with noble liquid detectors

Jingke Xu, for the LLNL noble liquid group

Applied Antineutrino Physics, Livermore, CA

Oct 11, 2018

LLNL-PRES-759437

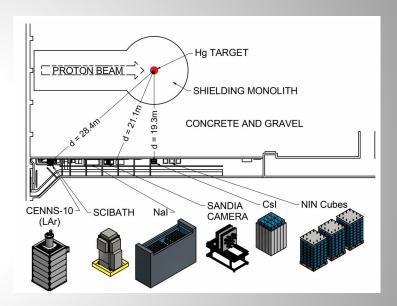
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Reactor monitoring with antineutrinos

- Reactor operations may be monitored with antineutrino signals from the reactor
 - Direct information from the core
 - Unshieldable, can not be tampered
 - Non-intrusive monitoring
 - Sensitive to fuel cycle evolution
- Inverse Beta Decay (IBD) is widely used in reactor antineutrino detections
 - SONGS
 - PANDA
 - Chandler
 - WATCHMAN
 - ...

The San Onofre Nuclear Generating Station (SONGS) where reactor monitoring with a Gd-LS detector was demonstrated by LLNL and SNL.

Coherent Elastic Neutrino Nucleus Scattering


CENNS is a supplemental approach to monitor reactors, possibly with compact detectors.

Advantages:

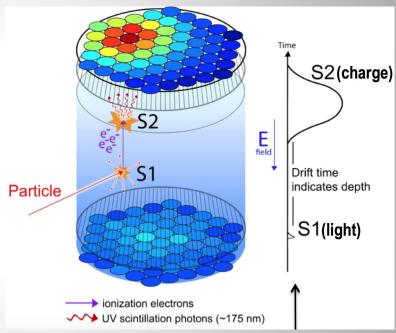
- High interaction cross section (N² enhancement)
- Small detection medium mass
- Small footprint

Disadvantages:

- Low signal energy at reactors (~1keV or lower)
- Possibly high background at ~1keV or lower
- Less neutrino energy information preserved

CENNS was first demonstrated by the COHERENT collaboration at the SNS using CsI targets. Science, 03 Aug 2017, DOI: 10.1126/science.aao0990

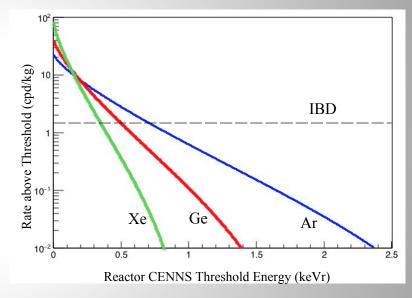
Dual-phase noble liquid TPCs


Reactor CENNS signals are similar to WIMP dark matter search signals:

- Nuclear recoils at low energy
- Relatively low event rate

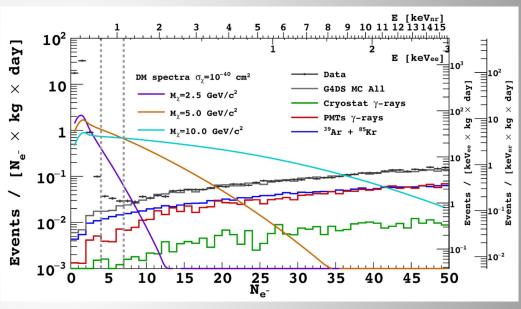
Dual-phase noble liquid TPCs have demonstrated high dark matter sensitivity

- Low radioactivity
- Single electron threshold
- Scalable


Reactor CENNS requires detection of charge signals only.

An illustration of signal generation in a dual-phase xenon TPC detector. For reactor CENNS events, only charge signals are expected.

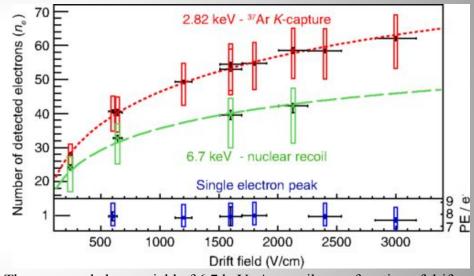
Scalability of noble liquid detectors


- Current IBD detectors suitable for reactor monitoring are ~1 ton or larger
- Ar/Xe/Ge detectors have comparable
 CENNS rates at ~200eV threshold
- A competitive reactor CENNS detector needs an mass of ~100-200 kg to have comparable signal rates
- Ar/Xe TPCs are scalable, and may compete with IBD

Estimated CENNS rate in different detector medium for a reactor of 1GW with 25m standoff

Challenges in Ar/Xe TPCs for reactor CENNS

- Nuclear recoil signal at low energies not calibrated
 - <6 keV for Ar</p>
 - <1 keV for Xe</p>
- Background in this energy region not thoroughly studied
 - Radioactive background
 - Instrumental background
 - Cosmogenic background for near-surface operations

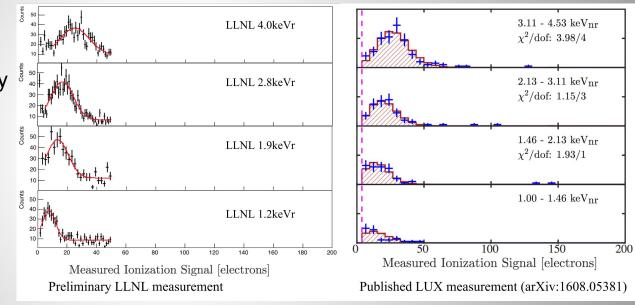


Low-energy spectrum measured by the DarkSide50 experiment -- Note the sharp background increase below 3 e-. Phys. Rev. Lett. 121, 081307 (2018)

LLNL nuclear recoil calibration - Ar

The LLNL noble liquid group carried out the Ar recoil calibration at the lowest energy reported up to data (6.7 keVr)

- Portable dual-phase Ar TPC
- 70 keV neutron beam
- End point measurement
- Field dependence studied

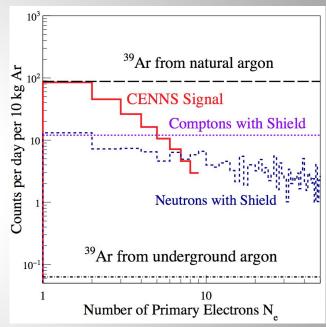

The measured charge yield of 6.7 keVr Ar recoils as a function of drift electric field, measured by LLNL. <u>Phys. Rev. Lett. 112, 171303(2014)</u>. The absolute charge scale may have a sizeable uncertainty

LLNL nuclear recoil calibration - Xe

We measured Xe recoils down to ~1 keVr with the best demonstrated accuracy

- Dedicated dual-phase Xe
 TPC detector
- DD neutrons (2.4 MeV)
- Backing spectrometry

Lower energy Xe recoil calibrations underway.

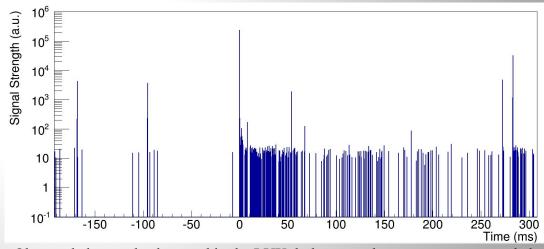

Radioactive background in Ar TPCs

Reactor CENNS signals in Ar TPCs with atmospheric argon will be overwhelmed by ³⁹Ar decay

- Cosmogenic ⁴⁰Ar(n, 2n)³⁹Ar
- High rate ~1 Bq/kg

Argon from some underground sources may have drastically lower ³⁹Ar concentration

- Xu, et al, <u>Astroparticle Physics 66, 53-60</u>
- DarkSide50, <u>Physical Review D 93 (8), 081101</u>


Estimated reactor CENNS rate in comparison with that of background (LLNL). <u>IEEE Trans.Nucl.Sci. 51 (2004)</u> 2151-2155

Instrumental background in Xe TPCs

Xe TPCs have demonstrated 1,000 times lower radioactivity than Ar TPCs due to a) the low intrinsic radioactivity and b) high self-attenuation power.

Xe TPCs observed high instrumental e- background rates

- Impurity-related
- Unextracted electrons
- Photoionization electrons
- Metal surface emissions

Observed electron background in the LUX dark matter detector over an extended period of 0.5s. APS April Meeting 2016 Volume 61, Number 6, B16.00005

Reactor CENNS with noble liquid TPCs

- ~100-200 kg of Ar/Xe dual-phase TPC
 - Compact footprint (~1 m²)
 - Low background rate with sufficient shielding
 - Suitable for surface operation
 - ~2-3 e- threshold
- High enough CENNS event rate
 - ~1000 cpd for 1 GWt thermal power at 25 m stand off
 - Respond to reactor operation interruptions within hours
 - Sensitive to fuel cycle evolution